Statistical techniques of multivariate analysis applied to the interpretation of climate change variables
DOI:
https://doi.org/10.5377/ribcc.v3i5.5938Keywords:
Factor Analysis, Principal Component, Quantitative methodsAbstract
Multivariate data analysis are a very useful tool in data series with a large number of variables, which often do not have a direct correlation, but which need to be interpreted and estimated. An example is all the data that may be related to climate change. Countries make measurements of many factors that can be cause or are a consequence of it. This provides very large databases, which are difficult to interpret. Analysis methods as Principal Component or Factor Analysis help the interpretation and grouping large number of parameters in simpler series. For this study, data from the World Bank were used, specifically for Latin American countries. Data were selected on agricultural land, forest area, protected land areas, population growth, total population, urban population growth and urban population. All of these seem to have some correlation, but the same is not so obvious and especially when it comes to measurements in different units. However, with Principal component method, we found groups that could be related to facts like the need for food, the need for land for housing and the loss of ecosystems. In the case of Factor Analysis, the groups in the factors found show concepts such as land use, total populations and population growth. In both analyzes the usefulness of these methods for the interpretation of large groups of data is evidenced.
Downloads
Metrics
References
Alvarez, R. (1995). Estadística multivariante y no paramétrica con SPSS, Aplicación a ciencia de la salud (220- 224). Madrid: Ediciones Díaz de Santos.
Arriaza, A., Fernández, F., López, M., Muñoz, M., Pérez, S. y Sánchez, A. (2008). Estadística básica con R y R-Commander (2-30). Cádiz: Servicio de publicaciones de la Universidad de Cádiz.
Barbero, M., Vila, E. y Holgado, F. (2013). Introducción básica al análisis factorial. Madrid: Universidad Nacional de Educación a Distancia. ISBN: 9788436262360
Grupo Banco Mundial (2015). Datos sobre el cambio climático. http://datos.bancomundial.org/tema/cambio- climatico. Consultado el 26-09-2015.
IPGRI (2003). Análisis estadístico de datos. Roma: Boletíntécnico IPGRI No. 8. ISBN 92-9043-543-7
Hair, J., Black, W., Babin, B. y Anderson, R. (2010). Multivariate Data Analysis (96-100). New York: Prentice Hall (7th edition).
Jolliffe, I. (1972). Discarding variables in a principal components analysis. Londres: Applied Statistics, Royal Statistics Society Series C 21: 160-173.
https://doi.org/10.2307/2346488
Marín, J. (2006), Análisis Multivariante. Diplomatura en Estadística (Notas de clase). Madrid: Universidad Carlos III de Madrid.
Salafranca, L., Sierra, V., Núñez, M., Solanas, A. y Leiva, D. (2005). Análisis estadístico mediante aplicaciones informáticas: SPSS, Statgraphics, Minitab y Excel (131-132). Barcelona: Publicaciones y ediciones, Universidad de Barcelona.
Downloads
Published
How to Cite
License
Copyright (c) 2018 Revista Iberoamericana de Bioeconomía y Cambio Climático
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright © 2024 Rev. iberoam. bioecon. climate change. National Autonomous University of Nicaragua León (UNAN-León), Area of Knowledge of Agricultural and Veterinary Sciences / Specific Area of Agroecology / Center for Research in Bioeconomy and Climate Change (CIByCC)..