Rendimiento agrícola en Cuba y su sincronismo con variables del Clima Espacial

Autores/as

DOI:

https://doi.org/10.5377/ribcc.v8i15.14296

Palabras clave:

Rendimiento Agrícola, Actividad Solar, Producción de Alimentos

Resumen

Con los resultados que se muestran se señala el comportamiento del rendimiento agrícola, reportado para Cuba durante los últimos 30 años (1990 a 2019) en los anuarios estadísticos del ramo, así como su relación con la Actividad Solar (AS) y geomagnética. El objetivo central consiste en corroborar si para las condiciones geográficas de Cuba se manifiesta, en las series de tiempo correspondientes, el sincronismo que en otras regiones del planeta muestra la producción agrícola con respecto a los ciclos multianuales de la Actividad Solar y Geomagnética. Se encontró que, mediante análisis de series de tiempo, correlación cruzada y con el uso de la Transformada Rápida de Fourier (FFT), que en la mayoría de los casos se manifiesta una variabilidad cuasi periódica en el rendimiento, cuyo período principal está en el orden de los 10 a 12 años, propio de las variables helio-geofísicas utilizadas. Se justifica dar continuidad al análisis ya realizado y presentado aquí, como un adelanto comparativo con resultados precedentes. Se presenta el análisis estadístico clásico de las series de tiempo, las que evidencian un acentuado sincronismo, lo que es corroborado mediante análisis espectral. La confirmación de los resultados obtenidos podría ser una importante herramienta a tener en cuenta en las estrategias de la producción de alimentos de origen agrícola, al permitir pronosticar futuros comportamientos productivos y consecuentemente una mejor y más rentable planificación de los recursos a mediano y largo plazo.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

P. Sierra-Figueredo, Instituto de Geofísica y Astronomía, Cuba

Investigador del Instituto de Geofisica y Astronomia, AMA, CITMA. Cuba

O. Durán-Zarboso, Inversiones Gamma, Cuba

Investigadora del Instituto de Geografía Tropical, AMA, CITMA. Cuba

Citas

Arlt, R. & Vaquero, J. M. (2020). Historical sunspot records. Living Rev. Sol. Phys. 17, 1

Birhan, M. and Tariku, S. (2021). Investigating the impact of space weather on agriculture products over Chokie mountain basin in Ethiopia. Acta Geophys. 69, 1481–1491. https://doi.org/10.1007/s11600-021-00610-9

Chizhevskii, A. (1940). Cosmobiologie et Rythme du Milieu extérieur. Verhandlungen, Zweiten Konferenz der Internationalen Gesellschaft für Biologische Rhythmusforschung, am 25. und 26. August 1939, Utrecht, Holland, HolmgrenHj, editor. Acta med. Scand. 1940; 108 (Suppl): 211-226.

Chizhevskii, A. (1973). El eco terrestre de las tormentas solares. Ed. "Misl" Moscú, 1973.

Cook, E.R.; Meko, D. M.; Stockton, C. W. (1997). A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States. Columbia University, Palisades, NY. Journal-of- climate (USA). (Jun. 1997), v. 10(6) p. 143-1356.

Dengel, S.; Aeby, D.; Grace, J. (2009). A relationship between galactic cosmic radiation and tree rings. New Phytol. 2009, 184, 545–551.

Druzhimin, I.P., Sazonov, B. y Iagodinskii, V. (1974). Variaciones multianuales en el desarrollo de las plantas. Cosmos, Tierra, Pronósticos. Capítulo 5, Edic. Misl, Moscú, 1974.

Hanjie Wang, Jan-Henning Feil , Xiaohua Yu (2021) Disagreement on sunspots and soybeans futures price. Economic Modelling Volume 95, February 2021, Pages 385-393. https://doi.org/10.1016/j.econmod.2020.03.005.

Hernández, B., Usatorres, R., Sierra, P. (1991) Ciclos de lluvia y actividad solar: Su relación en algunas regiones pesqueras de Cuba. Instituto de Investigaciones Pesqueras, Min. Pesca. Cuba. 1991 (No publicado).

Leamon, R. J., McIntosh, S. W., & Marsh, D. R. (2021) Termination of solar cycles and correlated tropospheric variability. Earth and Space Science, 8, e2020EA001223. https://doi. org/10.1029/2020EA001223.

Lean, J. Beer J., Bradley, R., (1995) Reconstruction of solar irradiance since (1610): Implications for climate change. Geophysical Research Letters. Volume 22, Issue 23 Pages 3107–3432. 1995.

Lin Zhang , Yanfeng Liu , Hongbin Zhan , Menggui Jin, Xing Liang (2021) Influence of solar activity and EI Niño-Southern Oscillation on precipitation extremes, streamflow variability and flooding events in an arid-semiarid region of China. Journal of Hydrology. Volume 601, October 2021, 126630. https://doi.org/10.1016/j.jhydrol.2021.126630.

Marsh, N.; Svensmark, H. (2003) Galactic cosmic ray and El Niño–Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties. J. Geophys. Res. Space Phys. 2003, 108.

Marshall, James R. (1972). "Precipitation Patterns of the U.S. and Sunspots." Ph. D. thesis, Univ. Kansas, 1972.

Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., & van Loon, H. (2009). Amplifying the Pacific climate system response to a small 11- year solar cycle forcing. Science, 325, 1114. https://doi.org/10.1126/science.1172872.

Miyahara, H., Tokanai, F., Moriya, T. et al. (2021). Gradual onset of the Maunder Minimum revealed by high-precision carbon-14 analyses. Sci Rep 11, 5482 (2021). https://doi.org/10.1038/s41598-021-84830-5.

Muthanna, A. Al-Tameemi; Chukin, V. (2016). Global weather cycle and solar activity variations. Journal of Atmospheric and Solar-Terrestrial Physics142 (2016) 55-59.

Ormes, J.F. (2018). Cosmic Rays and Climate. Adv. Space Res. 2018, 62, 2880–2891.

Oshimagye, I. G and Eweh, E.J. (2021) Investigation of Space Weather Effects on Agricultural Produce in Benue State Nigeria, Environmental Rev. Lett., 6 (7). www.mindsourcingoa.com.

Petro Melnik, Oksana Drebot (2019). Production of winter wheat in the phases of solar activity cycle. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development Vol. 19, Issue 4, 2019 PRINT ISSN 2284-7995, E-ISSN 2285-3952.

Pierce, J. R. (2017). Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment. Journal of Geophysical Research: Atmospheres, 122, 8051-8055. https://doi.org/10.1002/2017JD027475

Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. (2014). Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability—Part A: Global and Sectoral Aspects; Field, C.B.V.R., Barros, D.J., Dokken, K.J., Mach, M.D., Mastrandrea, T.E., Bilir, M., Chatterjee, K.L., Ebi, Y.O., Estrada, R.C., Genova, B., et al., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 485–533.

Prikryl, P., Muldrew, D. B., & Sofko, G. J. (2009). The influence of solar wind on extratropical cyclones—Part 2: A link mediated by auroral atmospheric gravity waves? Annales Geophysicae, 27, 31–57. https://doi.org/10.5194/angeo-27-31-2009

Pustilnik, L.A. & Din, G.Y. (2004). Influence of solar activity on the state of the wheat market in medieval England. Sol Phys. (2004) 223: 335. https://doi.org/10.1007/s11207-004-5356-5.

Pustilnik L, Yom Din G. (2013). On Possible Influence of Space Weather on Agricultural Markets: Necessary Conditions and Probable Scenarios. Atmospheric and Oceanic Physics. Astrophysical Bulletin, 2013, Vol. 68, No.1, pp.1-18. L.

Roberts, W. O., & Olson, R. H., (1973). Geomagnetic storms and wintertime 300-mb trough development in the North Pacific-North America Area. Journal of the Atmospheric Sciences, 30, 135–140. https://doi.org/10.1175/1520-0469(1973)0302.0.CO;2

Roberts, Walter 0. (1973). Relationships between Solar Activity and Climate Change." University Corp. for Atmospheric Research, Boulder, Colo., November 1973.

Shmelev SE, Salnikov V, Turulina G, Polyakova S, Tazhibayeva T, Schnitzler T, Shmeleva IA. (2021) Climate Change and Food Security: The Impact of Some Key Variables on Wheat Yield in Kazakhstan. Sustainability. 2021; 13(15):8583. https://doi.org/10.3390/su13158583.

Sierra P., Marinero E., Sol A., Zúniga-González C. (2019). Cane sugar production in El Salvador and its relationship with the variability of Solar and Geomagnetic Activity: An approach to Bioeconomic and Climate Change. Revista Iberoamericana de Bioeconomía y Cambio Climático (Rev. iberoam. bioecon. cambio clim.) Vol. 5 núm. 10, 2019, pág. 1209-1221 ISSN electrónico 2410-7980. https://doi.org/10.5377/ribcc.v5i10.8946.

Sierra, P.; Marinero, E.; Sol, S. (2017). Actividad Solar y su asociación con el régimen de lluvias en El Salvador. León, Nicaragua. Rev. iberoam. bioecon. cambio clim. Núm. 6 (3), 2017, pág. 782-799 ISSN electrónico 2410-7980. https://doi.org/10.5377/ribcc.v3i6.5948

Sierra, P. Pérez, A.; Durán, O.; Zaldívar, J. (2016) Análisis del impacto de la Actividad Solar y la variabilidad climática en la productividad apícola para el territorio cubano. Revista Iberoamericana de Bioeconomía y Cambio Climático. Rev. iberoam. bioecon. cambio clim.) Vol. 1 núm. 2, 2015, pág. 156-171. ISSN electrónico 2410-7980. DOI 10.5377/ribcc.v1i2.2481

Sierra-Figueredo, P., Marinero-Orantes, E. A., Sol-Sanchez, A., & Zuniga-González, C. A. (2021). Variabilidad de la Producción Cafetalera en El Salvador y su Posible Relación con el Clima Espacial. Rev. Iberoam. Bioecon. Cambio Clim., 7(14), 1632–1643. https://doi.org/10.5377/ribcc.v7i14.12607

Sofia, S. (1985). From solar dynamo to terrestrial climate. Fluctuations in the Suns´s energy may affect climate. American Scientist 1985 Vol. 73, No.4, p. 326, jul-agosto.

Svensmark, H. (2000) Cosmic Rays and Earth’s Climate. Space Sci. Rev. 2000, 93, 175–185.

Svensmark, H. (2015). Cosmic Rays, Clouds and Climate. Europhys. News 2015, 46, 26–29.

Svensmark, H., & Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage–a missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 1225–1232. https://doi.org/10.1016/S1364-6826(97)00001-1.

Tinsley, B. A. (2000). Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Science Reviews, 94, 231–258.

Tripathi, D.K., Tripathi, R.P., Tripathi, A.K. (2022). Influences of Solar Activity on Food Grains Yield. In: Mitra, M., Nasipuri, M., Kanjilal, M.R. (eds) Computational Advancement in Communication, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 786. Springer, Singapore. https://doi.org/10.1007/978-981-16-4035-3_13.

Virden, H. (1976). Do sunspot cycles affect crop yields? Economic Research Service, U.S. Department of Agriculture. Agricultural Economic Report No. 327. ABSTRACT.

Vitali, G., Rogosin, S., & Baldoni, G. (2019). Climate Change and Grain Production Fluctuations. arXiv preprint arXiv:2002.07039.

White, W. B., & Liu, Z. (2006). Resonant excitation of the quasidecadal oscillation by the 11year signal in the Sun's irradiance. Journal of Geophysical Research, 113, C01002. https://doi.org/10.1029/2006JC004057.

Publicado

2022-05-31

Cómo citar

Sierra-Figueredo, P., & Durán-Zarboso, O. (2022). Rendimiento agrícola en Cuba y su sincronismo con variables del Clima Espacial . Rev. Iberoam. Bioecon. Cambio Clim., 8(15), 1822–1832. https://doi.org/10.5377/ribcc.v8i15.14296

Número

Sección

Articulos de revision

Categorías

Artículos más leídos del mismo autor/a