Reproductive capacity of Nannochloropsis oculata in different concentrations of salinity and fertilizer: a contribution to aquaculture Bioeconomy
DOI:
https://doi.org/10.5377/ribcc.v6i12.9977Keywords:
Batery, Salinity, Temperature, Nannochloropsis, Nutrients, Aquaculture biioeconomyAbstract
The study was focused on contributing to the Aquaculture Bioeconomy by evaluating the reproductive rhythm of Nannochloropsis oculata in two experimental batteries with saline concentrations of 33 ‰, 25 ‰, 20 ‰, 15 ‰, 10 ‰ and 5 ‰. Single doses of 0.32 ‰ and 1 ‰ of F / 2 Guillard were applied to each one, respectively. Two experiments were carried out at times of 10 and 23 days at a temperature of 25 ºC. The first experiment with 0.32 ‰ of F / 2 Guillard, N. oculata presented a higher number of cells / ml in salinities of 33 ‰ and 25 ‰, at 8 days of study, denoting the affinity of N. oculata to reproduce with greater speed in that salinity range. The importance of using F / 2 Guillard was observed using 1 ‰ because the microalgae has a similar number of cells / ml (P≤0.05) in saline concentrations of 33 ‰, 25 ‰, 20 ‰ and 15 ‰ and similar concentration to microalgae cultured with 0.32 ‰ of F / 2 Guillard in salinities of 33 ‰ and 25 ‰. The capacity of N. oculata was tested in a second experiment where the results show a similar number of cells / ml between the saline treatments, in both batteries, at 23 days of culture. The results show that N. oculata can be cultivated with low concentrations of F / 2 Guillard in salinity ranges between 25 ‰ and 33 ‰, which implies cost reduction.
Downloads
Metrics
References
Alzugaray, R., Puga, R., Valle, S., Morales, O., Grovas, A., López, L., ... & Fujita, R. (2019). Un enfoque multiinstitutional para modelar el beneficio bioeconómico de perspectivas de manejo pesquero en Cuba. Revista Cubana de Investigaciones Pesqueras, 36(2), 0138-8452.
Almendarez, L. C. (2015). La Bioeconomía acuícola como herramienta para la toma de decisiones empresariales. ContactoS, 98, 14-18.
Anderson, L. y Seijo, J. 2010. Bioeconomics of Fisheries Management. Wiley-Blackwell, NJ. 305p.
Álvarez Lajonchére, L., Hernández, O., Comas, A., Martínez, V., y Lozano, B. (1981). Efecto de la reducción de salinidad sobre la tolerancia a altas temperaturas en la microalga Nannochloropsis oculata. Hidrobiológica, 6(1-2), 39-42.
Andrews, T., y Lorimer, G. (1987). Rubisco: Structure, mechanisms and prospects for improvement. En The Biochemistry of Plants, Vol. 10 (Hatch, M. D. and Boardman, N. K., Eds.) pp 131-218, Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-675410-0.50009-9
Barclay, W., y Apt, K. (2013). The microalgae cell with reference to mass cultures: Strategies for bioprospecting microalgae for potential commercial applications. En: Richmond A, Hu Q, editores. Handbook of microalgal culture: applied phycology and biotechnology. 2a ed. Wiley Blackwell, (2013) 69-79. https://doi.org/10.1002/9781118567166.ch4
Fao, W. F. P. (2014). IFAD (2012) The State of Food Insecurity in the World 2012: Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome.
Fernández, F., Sevilla, J. y Grima, E. (2018). Contribución de las microalgas al desarrollo de la bioeconomía. Mediterráneo económico, (31), 309-331.
Ferreira, R., Esquivel, M. y Teixeira, A. (2000). Catabolism of ribulose bisphosphate carboxylase from higher plants. Current Topics in Phytochemistry, 3, 129-165.
Fulks, W. y Main, K. (1991). Rotifer and microalgae culture systems. Proceeding of a US-Asia Workshop. Honolulu, Hawaii: The Oceanic Institute, p.1-364.
Guiry, M. (2013). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org/search/genus/detail/?genus_id=44568; Recuperado en 04 Noviembre 2013
Kozaki, A., y Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation. Nature 384, 557-560. https://doi.org/10.1038/384557a0
Lubian, L., Montero, O., Moreno-Garrido, I., Huerstas, I., Sobrino, C., González, M., y Pares, G. (2000). Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol. 12, 249-255. https://doi.org/10.1023/A:1008170915932
Lubzens, E., Gibson, O, Mora, O., y Sukenic, A. (1995). Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133, 295-310. https://doi.org/10.1016/0044-8486(95)00010-Y
Martínez, M., Sanchez, R., Meza, E., Ulloa, R., y Saldivar, J. (2016). Síntesis de lípidos de la microalga Nannochloropsis oculata para su uso potencial en la producción de biodiesel. Rev. Int. Contam. Ambie. 33(85-91). https://doi.org/10.20937/RICA.2017.33.esp02.08
Paes, C., Faria, G., Tinoco, N., Castro, D., Barbarino, E., y Laurenco, S. (2016). Growth, nutrient uptake and chemical composition of Chlorella sp. and Nannochloropsis oculata under nitrogen starvation. Lat. Am. J. Aquat. Res, 44(2), 275-292. DOI: 10.3856/vol44-issue2-fulltext-9. https://doi.org/10.3856/vol44-issue2-fulltext-9
Pereira, M., Jáuregui, G., Devia, A., y Rojas, J. (2017). Cultivo de microalgas Isochrysis galbana y Nannochloropsis sp. para alimentación de larvas de peces marinos. Mutis, 7(2), 81-85, doi: http://dx.doi.org/10.21789/22561498.1246
Pérsico, M., Moris, M., Tranier, E., Zanazzi, A., Saubidet, A., y Beligni, M. (2011). Evaluación de un sistema exterior de cultivo masivo de la microalga marina Nannochloropsis oculata, en una zona templada oceánica de Argentina. Rev Lattiinoam Biiottecnoll Amb Allgall. 2(1), 30-48.
Ra, C., Kang, C., Jung, J., Jeong, G., y Kim, S. (2016). Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 212, 254-261. https://doi.org/10.1016/j.biortech.2016.04.059
Renaud, S., Parry, D., Thinh, L. Kuo, C., Padovan, A., y Sammy, N. (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J. Appl. Phycol. 3 (1), 43-53. DOI: 10.1007/BF00003918. https://doi.org/10.1007/BF00003918
Sánchez-Torres, H., Juscamaita-Morales, J., Vargas-Cárdenas, J., y Oliveros-Ramos, R. (2008). Producción de la microalga Nannochloropsis oculata (Droop) Hibberd en medios enriquecidos con ensilado biológico de pescado. Ecología Aplicada, 7(1-2), 149-158. https://doi.org/10.21704/rea.v7i1-2.370
Sukenik, A. (1999). In: COHEN Z, (Ed). Chemicals from Microalgae. London: Taylor y Francis, pp. 41-56.
Wei, L., Wang, Q., Xin, Y., Lu, Y., y Xu, J. (2017). Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of rubisco activase. Algal Research. http://dx.doi.org/10.1016/j.algal.2017.07.023
Spolaore, P., Joannis‐Cassan, C., Duran, E., & Isambert, A. (2006). Optimization of Nannochloropsis oculata growth using the response surface method. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(6), 1049-1056. https://doi.org/10.1002/jctb.1529
Xiao, Y., Zhang, J., Cui, J., Feng, Y., y Cui, Q. (2013). Metabolic profiles of Nannochloropsis oceanica IMET1 under nitrogen-deficiency stress. Bioresource Technology 130, 731-738 https://doi.org/10.1016/j.biortech.2012.11.116
Downloads
Published
How to Cite
License
Copyright (c) 2020 Ibero-american JournalL of Bioeconomy and Climate Change e-ISSN 2410-7980
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright © 2024 Rev. iberoam. bioecon. climate change. National Autonomous University of Nicaragua León (UNAN-León), Area of Knowledge of Agricultural and Veterinary Sciences / Specific Area of Agroecology / Center for Research in Bioeconomy and Climate Change (CIByCC)..