Agronomic characterization of black cean (Phaseolus vulgaris) genotypes under vertical planting and Protected environment in Veracruz

Authors

DOI:

https://doi.org/10.5377/ribcc.v10i20.21910

Keywords:

Production, performance, tutoring, planting distance, fabaceae

Abstract

Background: Background: Black bean cultivation in Veracruz faces multiple challenges, from agronomic management to climatic and phytosanitary conditions, which impact producers' profitability. Therefore, a combination of strategies is needed, including the use of appropriate technologies and the adoption of improved varieties. The objective of this research was to characterize and evaluate the production of 13 Jamapa-type bean varieties planted vertically in a protected environment. Methodology: The experimental design was a randomized complete block design with 12 treatments (Negro Ruby, N. Veracruz, N. Huasteco-81, N. Jamapa-CECOT, N. INIFAP, N. Papaloapan, N. Tacaná, N. 8025, N. Tropical, N. Verdín, N.
Cotaxtla, N. Comapa, and N. Medellín), and with three replications. The variables evaluated were Spad units (chlorophyll), plant height, number of pods, number of grains per pod, 100-grain weight, dry matter, and yield.
Results: Statistically significant differences were found in plant height between the Negro Comapa and Negro Papaloapan varieties, with heights of 2.53 and 2.46 m, respectively. The highest number of pods per plant was
observed in the N. Rubí, N. Tropical, N. Cotaxtla 91, N. Papaloapan, N. Comapa, and INIFAP varieties, with 25.72, 26.11, 25.39, 28.05, 30.55, and 31.89 pods per plant, respectively. The highest grain yield was also observed in the N. Comapa, Rubí, N. Papaloapan, and INIFAP varieties, with 157.00, 163.61, 157.00, and 183.06 g per plant, respectively. Conclusion: It is concluded that vertical planting in a protected environment is an excellent alternative for producing beans for small producers in the Mexican tropics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

A. Capetillo-Burela, National Institute of Agricultural and Livestock Forestry Research, Mexico

Teacher investigated from the National Institute of Forestry, Agricultural and Livestock Research, Mexico.

R. Zetina-Lezama, National Institute of Forestry, Agriculture and Livestock Research

Doctor of Science, specialist in soils and with more than 40 years of research experience at INIFAP

M. A. Reynolds-Chávez, National Institute of Forestry, Agriculture and Livestock Research

Doctor of Science in agricultural machinery and with more than 20 years at INIFAP as a scientific researcher

C. J. López-Collado, Colegio de Postgraduados, Campus Veracruz< Mexico

Doctor en ciencias epecialista en suelos e investigador en el Colegio de Postgraduados por mas de 30 años

E. Ortega-Jimenez, Postgraduate College, Veracruz Campus, Mexico

Doctor of Science specializing in pastures and forages at the Colegio de Postgraduados Campus Veracruz and with more than 25 years of experience

G. López-Romero, Postgraduate College, Veracruz Campus, Mexico

Doctor of Science from the College of Postgraduates, specializing in agroecology and with more than 25 years of experience

D. J. Palma-López, College of Postgraduates, Tabasco Campus (COLPOS)

Doctor especialista en edafologia y con más de 35 años de servicio en el Colegio de Postgraduados Campus Tabasco

L. A. Osorio-Magdalena, Technological Institute of Tantoyuca, Veracruz. Mexico

Agricultural Innovation Engineer specializing in agroecology

References

Acosta-Gallegos, J. A., Kelly, J. D., & Gepts, P. (1998). Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Science, 38(3), 643–652. https://doi.org/10.2135/cropsci1998.0011183X003800030018x

Acosta-Gallegos, J. A., & Kelly, J. D. (2007). Advances in the development of improved dry bean cultivars: Implications for the farming

community. Field Crops Research, 4, article 35. https://doi.org/ 10.3389/fphys.2013.00035

Beebe, S. E., Rao, I. M., Cajiao, C., & Grajales, M. (2008). Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Science, 48(2), 582–592. https://doi.org/10.2135/cropsci2007.07.0404

Capetillo, B. Á., Zetina, L. R., Reynolds, Ch. M. A., Ugalde, A. F. J., Matilde, H. C., Espinoza Del, C. A., Cadena, Z. M., & López, L. J. A. (2022). Producción de frijol a cielo abierto y en ambiente protegido en el centro de Veracruz. En XXXII Reunión Científica Tecnológica Forestal y Agropecuaria Tabasco 2021 y IX Simposio Internacional en Producción Agroalimentaria Tropical (pp. 52–57). Tabasco, México.

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (para adecuarlo a las condiciones de la República Mexicana) (4ª ed.). Universidad Nacional Autónoma de México.

Gross, M. R., Von Pinho, R. G., & Brito, A. H. D. (2006). Adubação nitrogenada, densidade de semeadura e espaçamento entre fileiras na cultura do milho em sistema plantio direto. Ciência e Agrotecnologia, 30, 387-393.

Hurtado, A. C., Castillo, Y., Quintero, E., Pérez, Y., & Olivera, D. (2018). Efecto de cuatro densidades de siembra en el rendimiento

agrícola del frijol común (Phaseolus vulgaris L.). Revista de la Facultad de Ciencias, 7(1), 88-100. https://doi.org/10.15446/rev.fac.cienc.v7n1.67773

Jiménez G., J. C., & Acosta G., J. A. (2013). Efecto de la densidad de cosecha en rendimiento de frijol Pinto Saltillo de riego en

Chihuahua, México. Revista Mexicana de Ciencias Agrícolas, 4(2), 243–257. https://doi.org/10.29312/remexca.v4i2.1235

Jiménez, A., & Acosta, J. A. (2013). Factores que afectan la producción de frijol en el norte de México: Variedades y densidad de siembra. Revista Mexicana de Ciencias Agrícolas, 4(6), 1159–1169 . https://doi.org/10.21046/rmca.v4i6.738

Kittas, C., Boulard, T., & Pommier, S. (2004). Greenhouse climate control: Information, guidance and decision support tools. Biosystems

Engineering, 87(2), 177–189. https://doi.org/10.1016/j.biosystemseng.2004.02.002

Kumar, D., Singh, R., & Sharma, R. (2014). Seed size and shape: A critical determinant of seed quality and field performance. Indian Journal of Plant Sciences, 5(3), 92–100.

Lamz-Piedra, A., Cárdenas-Travieso, R. M., Ortiz-Pérez, R., Eladio-Alfonzo, L., & Sandrino-Himely, A. (2017). Evaluación preliminar de líneas de frijol común (Phaseolus vulgaris L.) promisorios para siembras tempranas en Melena del Sur. Cultivos Tropicales, 38(4), 111-118.

The International Maize and Wheat Improvement Center (CIMMYT Economics Program). (1988). From agronomic data to farmer

recommendations: An economics training manual (No. 27). CIMMYT.

Maphosa, Y., & Jideani, V. A. (2017). The role of legumes in human nutrition. El Higo Revista Científica, 9(1), 35–44. https://doi.org/10.5772/intechopen.69127

Muñoz-Perea, C. G., Terán, H., Allen, D. J., Wright, E. M., & Singh, S. P. (2006). Adaptation of dry bean landraces and improved cultivars to contrasting environments. Crop Science, 46(2), 488–497. https://doi.org/10.2135/cropsci2005.05-0107

Morales, F. J., & Jones, P. G. (2004). The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Research, 100(1), 57–65. https://doi.org/10.1016/j.virusres.2003.12.014

Olivares, S. E. (2016). Métodos estadísticos UANL, Versión 1.7. Facultad de Agronomía de la Universidad Autónoma de Nuevo León.

Peña-Valdivia, C. B., Trejo, C., & Rivas-Ramírez, M. M. (2016). Physiological and anatomical characteristics of bean (Phaseolus vulgaris L.) under drought stress. Agricultural Water Management, 164, 275–284. https://doi.org/10.1016/j.agwat.2015.10.017

Rao, I. M., Beebe, S., Polanía, J., Grajales, M., Cajiao, C., García, R., & Ricaurte, J. (2013). Physiological basis of improved drought resistance in common bean: The contribution of photosynthate mobilization and nutrient uptake. Frontiers in Plant Science, 4, article 114. https://doi.org/10.3389/fpls.2013.00114

Ramírez-Vallejo, P., & Kelly, J. D. (1998). Traits related to drought resistance in common bean. Euphytica, 99(2), 127–136. https://doi.

org/10.1023/A:1018353200015

Raya-Pérez, J. C., Gutiérrez-Benicio, G. M., Ramírez-Pimentel, J. G., Covarrubias-Prieto, J., & Aguirre-Mancilla, C. L. (2014). Caracterización de proteínas y contenido mineral de dos variedades nativas de frijol de México. Agronomía Mesoamericana, 25(1), 1–11. https://doi.org/10.15517/am.v25i1.14185

Rosales-Serna, R., Kohashi-Shibata, J., Acosta-Gallegos, J. A., Trejo-López, C., Ortiz-Cereceres, J., & Kelly, J. D. (2004). Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Research, 85(2–3), 203-211. https://doi.org/10.1016/S0378-4290(03)00161-8

Rosales-Serna, R., Acosta-Gallegos, J. A., Durán-Durán, R. P., Guillén-Andrade, H., Pérez-Herrera, P., Esquivel-Esquivel, G., & Muruaga-Martínez, J. S. (2003). Diversidad genética del germoplasma mejorado de frijol (Phaseolus vulgaris L.) en México. Agricultura Técnica en México, 29(1), 11–24.

Rosales-Serna, R., Flores-Gallardo, H., Nava-Berumen, C. A., & Ortiz-Sánchez, I. A. (2019). Rendimiento y calidad de grano en líneas mejoradas de frijol cultivadas bajo riego en Durango, México. Revista Fitotecnia Mexicana, 42(1), 39–46. https://doi.org/10.35196/rfm.2019.1.39

Sánchez, R., Rodríguez, L., & López, J. (2017). Tecnologías para la agricultura en ambientes protegidos: Desafíos y oportunidades en el contexto mexicano. Agricultura Técnica en México, 43(3), 387–402. https://doi.org/10.1016/j.agri.2017.08.002

SIAP (Servicio de Información Agroalimentaria y Pesquera). (2020). Avance de siembras y cosechas: Resumen nacional por cultivo. http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenDelegacion.dov

SIAP (Servicio de Información Agroalimentaria y Pesquera). (2021). Avance de siembras y cosechas: Resumen nacional por cultivo.

http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/ResumenProducto.do

Singh, S. P., Terán, H., Schwartz, H. F., Otto, K., & Lema, M. (2009). Introgressing white mold resistance from Phaseolus species of the

secondary gene pool into common bean. Crop Science, 49(5), 1629-1637. https://doi.org/10.2135/cropsci2008.08.0508

Tosquy Valle, O. H., López Salinas, E., Zetina Lezama, R., Villar Sánchez, B., & Rodríguez Rodríguez, J. R. (2017). Production of black bean genotypes under residual moisture and terminal drought conditions. REVISTA TERRA LATINOAMERICANA, 35(1), 29–39.

https://doi.org/10.28940/terra.v35i1.239

Tosquy-Valle, O. H., Villar-Sánchez, B., Ibarra-Perez, F. J., Anaya-López, J. L., & Garrido-Ramírez, E. R. (2022). Yield and resistance to golden yellow mosaic of tropical black bean genotypes. Revista mexicana de ciencias agrícolas, 13(7), 1285-1294. https://doi.org/10.29312/remexca.v13i7.2429

White, J. W., & Singh, S. P. (1991). Breeding for adaptation to drought. In A. van Schoonhoven & O. Voysest (Eds.), Common beans:

Research for crop improvement (pp. 501–560). CIAT.

Published

2025-12-19

How to Cite

Capetillo-Burela, A., Zetina-Lezama, R., Reynolds-Chávez, M. A., López-Collado, C. J., Ortega-Jimenez, E., López-Romero, G., Palma-López, D. J., & Osorio-Magdalena, L. A. (2025). Agronomic characterization of black cean (Phaseolus vulgaris) genotypes under vertical planting and Protected environment in Veracruz. Ibero-American Journal of Bioeconomics and Climate Change, 10(20), 2476–2483. https://doi.org/10.5377/ribcc.v10i20.21910

Issue

Section

Research articles

Categories

Most read articles by the same author(s)