Climate change: Effect of the 35th cold front of year 2021 on the vegetation of North Tamaulipas, Mexico
DOI:
https://doi.org/10.5377/ribcc.v10i19.20748Keywords:
Acclimatization, chilling, injury, frost, perennialsAbstract
Background: A polar air mass from the north of the continent moved towards Mexico in February 2021. Low temperatures determine the natural distribution of vegetation. This work consisted of evaluating cold damage in the flora of northern Tamaulipas, in the absence of previous reports. Methodology: The study was carried out in Río Bravo, Tamaulipas, from February 22 to March 22, 2021, through a census of perennial species. Damage from low temperatures was evaluated using a visual scale per species. The minimum temperature of February from 2001 to 2024 was taken. Ambient temperature, relative humidity, precipitation, dew point, barometric pressure and wind speed (min, med and max) for 02/2021. Results: The days 02/15-16/2021 were the coldest with 36 accumulated hours of < 0° C. 79% of the native species and 72% of the introduced species did not have serious symptoms
due to low temperature. The fir was the dominant introduced species and did not present damage, while guaje was the predominant native species with 100% of plants defoliated and 15% of mortality in the population. The most sensitive introduced species were great bougainvillea, flamboyant, guava, jacaranda, neem tree and pygmy palm, 50 to 100% of plants defoliated and 29 to 50% mortality. Conclusion: Considering the subtropical and tropical origin of most species, the damage was partial, less than what could be expected, given the climatic conditions of the event.
Downloads
Metrics
References
Adamo, N., Alansari, N., & Sissakian, V. (2021). Review of Climate Change Impacts on Human Environment: Past, Present & Future Projections. Engineering, 13(6), 605-630. https://doi.org/10.4236/eng.2021.1311044
Afolabi, A. S., Choi, I.-L., Lee, J. H., Kwon, Y. B., & Kang, H.-M. (2023). High-Relative-Humidity Storage Reduces the Chilling Injury Symptoms of Red Sweet Peppers in the Breaker Stage. Horticulturae, 9(1), article 116. https://doi.org/10.3390/horticulturae9010116
Alejandro-Allende, F., García-Mata, R., García-Sánchez, C., Mora-Flores, J. S., & Sangerman Jarquín, D. M. (2020). Competitividad de la producción de sorgo en el Norte de Tamaulipas, México. Revista Mexicana de Ciencias Agrícolas, 11(1), 139-150. https://doi.org/10.29312/remexca.v11i1.1914
Antony, R. M., Kirkham, M. B., Todd, T. C., Bean, S. R., D. Wilson, J., R. Armstrong, P., Maghirang, E., & L. Brabec, D. (2019). Low-temperature tolerance of maize and sorghum seedlings grown under the same environmental conditions. Journal of Crop Improvement, 33(3), 287-305. https://doi.org/10.1080/15427528.2019.1579139
Aroca, R., Porcel, R., & Ruiz, L. J. M. (2012). Regulation of root water uptake under abiotic stress conditions. Journal Experimental Botany, 63(1), 43–57. https://doi/10.1093/JXB/ERR266
Bandera, F. E. & Pérez, P. L. (2015). Mejoramiento genético de guayabo (Psidium guajava L.). Cultivos Tropicales, 36(Supl. 1), 96-110.
Bekele, W. A., Fiedler, K., Shiringani A., Schnaubelt D., Windpassinger S., Uptmoor R., Friedt, W., & Snowdon, R. J. (2014). Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions. Plant Cell Environmental, 37 (3), 707–723. https://doi/10.1111/pce.12189
Bencherif, K., Trodi, F., Hamidi, M., Dalpè, Y., Hadj-Sahraoui, A.L. (2020). Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress. In: Giri, B., Sharma, M.P. (eds) Plant Stress Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9380-2_14
Bitsa, E., Flocas, H., Kouroutzoglou, J., Hatzaki, M., Rudeva, I., & Simmonds, I. (2019). Development of a front identification scheme for compiling a cold front climatology of the mediterranean. Climate, 7(11), 11: 130. https://doi.org/10.3390/cli7110130
Cardozo, Balbino, A., Reboita, S. M. S., & García, S. R. (2015). Climatology of cold fronts over South America and its relation with the southern. Revista Brasileira de Climatologia, 17(2): 9-26. https://doi.org/10.5380/abclima.v17i0.40124
Castro, S., U. B., & Juárez, R. C. R. (2010). Estudio regional forestal: Cuenca de San Fernando Estado: Tamaulipas. http://www.conafor.gob.mx:8080/documentos/docs/9/3420Estudio%20Regional%20Forestal%202801
Catto, J. L., & Raveh, R.S. (2019). Climatology and dynamics of the link between dry intrusions and cold fronts during winter. Part I: Global climatology. Climate Dynamics, 53(3), 1873-1892. https://doi: 10.1007/s00382-019-04745-w
Chaar, J. E. (2013). Resistencia a heladas en plantas frutales. Avances en Investigación Agropecuaria, 17(3),109-121.
Charrier, G., Lacointe, A., & Améglio T. (2018). Dynamic modeling of carbon metabolism during the dormant period accurately predicts the changes in frost hardiness in walnut trees Juglans regia L. Frontiers in Plant Science, 9: Article 1746. https://doi.org/10.3389/fpls.2018.01746
Contreras, S. C., Galindo Mendoza, M. G. y Ibarra Zapata, E. (2012). Las regiones agroecológicas de México. Memorias SELPER. https://www.researchgate.net/publication/282878725
Davis, N. A., Richter, J. H., Glanville, A. A., Edwards J., & Lajoie, E. (2022). Limited surface impacts of the January 2021 sudden stratospheric warming. Natural Communications, 13(1), 1136. http://doi:10.1038/s41467-022-28836-1
Dobler, M. C., & Bocco, G. (2021). Social and environmental dimensions of drought in Mexico: An integrative review. International Journal of Disaster Risk Reduction, 55: Article 102067. https://doi.org/10.1016/j.ijdrr.2021.102067
Espinosa Ramírez, M., Andrade Limas, E., Rivera Ortiz, P., & Romero Díaz, A. (2011). Degradación de suelos por actividades antrópicas en el norte de Tamaulipas, México. Papeles de Geografía, (53-54), 77–88. https://revistas.um.es/geografia/article/view/143451
Frausto Ortega, J. (2016). Abasto del agua en la frontera norte de Tamaulipas. Frontera Norte, 28(55), 153–182. https://doi.org/10.17428/rfn.v28i55.146
González-Suárez, M., Mora-Olivo, A. Villanueva-Gutiérrez, R., Lara-Villalón, M., Vanoye-Eligio, V., & Guerra-Pérez, A. (2020). Diversidad de la flora de interés apícola en el estado de Tamaulipas, México. Revista Mexicana de Ciencias Pecuarias, 11 (3), 914-932. https://doi.org/10.22319/rmcp.v11i3.4717
Hsu, H. H., Hong, H. J., Chen, T. Y. Chen, L.Y., & Tseng, W. L. (2022). 2021 Texas cold snap: Manifestation of natural variability and a recent warming trend. Weather and Climate Extremes, 37: Article 100476, https://doi.org/10.1016/j.wace.2022.100476
Instituto Nacional de Estadística y geografía [INEGI]. (2017). Anuario Estadístico y Geográfico de Tamaulipas 2017.
Lagerquist, R., Allen, J.T., & McGovern, A. (2020). Climatology and variability and warm and cold fronts over north america from 1979 to 2018. Journal of Climate, 33(15), 6531–6554. https://doi.org/10.1175/JCLI-D-19-0680.1
Lynas, M., Houlton, B. & Perry, S. (2021). Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literatura. Environmental Research Lettetrs, 16: Article 114005. https://doi.org/10.1088/1748-9326/ac2966
Martínez-Hernández. P.A., Cortés Díaz., E., Purroy Vásquez. R., Palma García. J., Del Pozo-Rodríguez, M. P. P. y C. Vite-Cristóbal. (2019). Leucaena leucocephala (LAM.) de WIT especie clave para una producción bovina sostenible en el trópico. Tropical & Subtropical Agroecosystems, 22(2), 331-357. http://dx.doi.org/10.56369/tsaes.2707
Mendoza, M., Ramírez, R., Ocaña, K. y Ávila, D. L. (2023). Efecto del oleaje debido a un evento “Norte” en el Golfo de México. https://imt.mx/resumen-boletines.html?IdArticulo=575&IdBoletin=202
Metcalfe, H., Bürger, J., Redwitz, C. V., Cirujeda, A., Fogliatto, S., Dostatny, D. F., Gerowitt, B., Glemnitz, M., González‐Andújar, J. L., Hernández Plaza, E., Izquierdo, J., Kolářová, M., Ņečajeva, J., Petit, S., Pinke, G., Schumacher, M., Ulber, L., Vidotto, F., & Fried, G. (2023). The utility of the ‘Arable Weeds and Management in Europe’ database: Challenges and opportunities of combining weed survey data at a European scale. Weed Research, 63(1), 1-11. https://doi.org/10.1111/wre.12562
Mora, M. O., & Ávalos, J.G. (2013). Plantas Silvestres Cd. Victoria, Tamaulipas, México del Bosque Urbano. Instituto de Ecología Aplicada Universidad Autónoma de Tamaulipas. Universidad Autónoma de Tamaulipas. 141 p. https://www.researchgate.net/publication/259238957_Plantas_Silvestres_del_Bosque_Urbano_Cd_Victoria_Tamaulipas_Mexico
Moradtalab, N., Weinmann, M., Walker, F., Höglinger, B., Ludewig, U., & Neumann, G. (2018). Silicon improves chilling tolerance during early growth of maize by effects on micronutrient homeostasis and hormonal balances. Frontier Plant Science, 9: Article 420. http://doi: 10.3389/fpls.2018.00420
NOAA. (2024). Annual 2023 Global Climate Report. Accessed January 17, 2024. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202313
Palta, J. P., & Weiss, L. S. (2018). Ice formation and freezing injury: An overview on the survival mechanisms and molecular aspects of injury and cold acclimation in herbaceous plants. En P. H. Li & L. Christersson (Eds.), Advances in Plant Cold Hardiness (1.a ed., pp. 143-176). CRC Press. https://doi.org/10.1201/9781351069526-11
Pimsler, M. L., Oyen, K. L., Herndon, J. D., Jackson, M., Strange, J. P., Dillon, M. E., & Lozier, J. D. (2020). Biogeographic parallels in thermal tolerance & gene expression variation under temperature stress in a widespread bumble bee. Science Reproduction 10(1), Article 17063. https://doi.org/10.1038/s41598-020-73391-8
Piña, M. O. (2005). Informe final del Proyecto CJ039: Prácticas de restauración y conservación de suelos de uso agropecuario. http://www.conabio.gob.mx/institucion/proyectos/resultados/Informe%20final%20-%20CJ039ok.pdf
Pl@ntNet (2022). Regional floras are based on WCVP. Govaerts R (ed.). 2022. The World Checklist of Vascular Plants (WCVP). Royal Botanic Gardens, Kew. https://identify.plantnet.org/es
Quiroz-González, B., Corrales-García, J. J. E., Colinas-León, M. T. B., & Ybarra-Moncada, M. C. (2017). Identification of variables correlated with chilling injury in Pitahaya (Hylocereus undatus Haworth). Agrociencia, 51(2), 153-172.
Reshi, Z. A., Ahmad, W., Lukatkin, A. S., & Javed, S. B. (2023). From nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and in vitro approaches. Metabolites, 13(8), article 895. https://doi.org/10.3390/metabo13080895
Reséndiz Ramírez, Z., López Santillán, J. A., Briones Encinia, F., Mendoza Castillo, Ma. D. C., & Varela Fuentes, S. E. (2014). Situación actual de los sistemas de producción de grano de maíz en Tamaulipas, México. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes, 22(62), 69-75. https://doi.org/10.33064/iycuaa2014623640
Reyes-García, V., Fernández-Llamazares, Á., Guèze, M., Garcés, A., Mallo, M., Vila-Gómez, M., & Vilaseca, M. (2016). Local indicators of climate change: The potential contribution of local knowledge to climate research. Wiley Interdiscip Review Climate Change, 7(1):109-124. https://doi.org/10.1002/wcc.374
Roberts, D. (2019). Diagnosing herbicide injury on trees and landscape plants. https://hort.extension.wisc.edu/files/2023/02/MNLA_TML_JF19_Diagnosing_Herbicide_Injury_Roberts89.pdf
Sari, N., Silverman, E. R., D., & Wehner, T. C. (2020). Effects of cold durations on chilling injury in Lagenaria germplasm. Hortscience, 55(10), 1551–1557. https://doi.org/10.21273/HORTSCI15184-20
Sarmiento-Muñoz, T., Alanís-Rodríguez, E., Mata-Balderas, J. M., & Mora-Olivo, A. (2019). Estructura y diversidad de
la vegetación eñosa en un área de matorral espinoso tamaulipeco. CienciaUAT, 14(1), 31-44. https://doi.org/10.29059/cienciauat.v14i1.10011
Satyakam, Z. G, Singh, R. K., & Kumar, R. (2022). Cold adaptation strategies in plants—An emerging role of epigenetics & antifreeze proteins to engineer cold resilient plants. Front Genetics,13: article 909007. https://doi.org/10.3389/fgene.2022.909007
Schneider, T. (2006). The general circulation of the atmosphere. Annual Review of Earth and Planetary Sciences, 34(1), 655–688. https://doi:org/34.031405.125144
Secretaria de gobernación [SEGOB] (2011). Atlas de riegos del estado de Tamaulipas.341 p. https://www.tamaulipas.gob.mx/proteccioncivil/wp-content/uploads/sites/36/2017/09/atlas-de-riesgos-del-estado-de-Tamaulipas.pdf
Servicio de Información Agroalimentaria pesquera [SIAP]. (2024). Anuario estadístico de la producción agrícola. Servicio de Información Agroalimentaria y Pesquera, Secretaría de Agricultura y Desarrollo Rural. Ciudad de México. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119
Silva, S. M., Medina, G.G., Ruiz C., J. A., Díaz, P. y Cano, G. M.A. (2007). Estadísticas Climatológicas básicas del estado de Tamaulipas (periodo 1961-2003). INIFAP-SAGARPA. Centro de Investigación Regional Noreste. Campo Experimental, Río Bravo. Libro Técnico No.2. 314 pg.
Secretaria de Marina [SMAR]. (2022). Resumen anual de frentes fríos que afectaron aguas y costas mexicanas. 69 pp. https://meteorologia.semar.gob.mx/dirmet/pdf/resumenff.pdf
Snyder, R. L., Melo-Abreu, P., & Villar-Mir, J. M. (2010). Protección contra las heladas: fundamentos, práctica y economía. Volumen 1. Publicaciones de Medio Ambiente, Cambio Climático y Bioenergía. 241 p. Organización de las Naciones Unidas para la Agricultura y la Alimentación Roma. https://www.fao.org/4/y7223s/y7223s.pdf
Taylor, R. B. (2014). Common Woody Plants and Cacti of South Texas. A Field Guide. Series: Texas Natural History Guides. (223 p). Ed. Texas Tech University Press.
Treviño, C. J., & Valiente, B. A. (2005). La vegetación de Tamaulipas y sus principales asociaciones vegetales. Biodiversidad Tamaulipeca Dirección General de Educación Superior Tecnológica. Instituto Tecnológico de Ciudad Victoria.
Valverde, P, Lodolini, E. M., Giorgi, V., Garcia-Lopez, M. T., & Neri, D. (2024). An easy methodology for frost tolerance assessment in olive cultivars. Front Plant Science, 15: Article 1397534. https://doi.org/10.3389/fpls.2024.1397534
Valverde, P., Zucchini, M., Polverigiani, S., Lodolini, E. M., López-Escudero, Fco. J., & Neri, D. (2020). Olive knot damages in ten olive cultivars after late-winter frost in central Italy. Scientia Horticulturae, 266, Article 109274. https://doi.org/10.1016/j.scienta.2020.109274
Vargas, T. V., Hernández, R. M. E., Gutiérrez, L. J., Plácido, D. C. J., & Jiménez, C. A. (2007). Clasificación climática del estado de Tamaulipas, México. CienciaUAT, 2(2), 15-19.
Vera-Hernández, P., Ortega Ramírez, M. A., Martínez Núñez, M., Ruiz-Rivas, M., & Rosas-Cárdenas, F. D. F. (2018). Proline as a probable biomarker of cold stress tolerance in Sorghum (Sorghum bicolor). Mexican Journal of Biotechnology, 3(3), 77-86. https://doi.org/10.29267/mxjb.2018.3.3.77
Vossler, F. G., & Delucchi, G. (2022). Leucaena leucocephala (Fabaceae), Especie Invasora En La Argentina. Boletín De La Sociedad Argentina De Botánica, 57 (4), 14-29. https://doi.org/10.31055/1851.2372.v57.n4.37327
Walker, L. R., Barnes, P. L., & Powell, E.A. (2006). Tamarix aphylla: a newly invasive tree in Southern Nevada. Western North American Naturalist, 66(2), 191-201. https://doi.org/10.3398/1527-0904(2006)66[191:TAANIT]2.0.CO;2
Wassan, S., Xi, C., Jhanjhi, N., & Binte-Imran, L. (2021). Effect of frost on plants, leaves, and forecast of frost events using convolutio nal neural networks. International Journal of Distributed Sensor Networks, 17(10). https://doi.org/10.1177/15501477211053777
Wilson, J. (2022). Protecting plants from cold temperatures. Publication Number:P2303. Mississippi State University Extention. http://extension.msstate.edu/publications/protecting-plants-cold-temperatures
Yahia, E. M., Carrillo-López, A., & Sañudo, A. (2019). Physiological disorders and their control. In Postharvest Technology of Perishable Horticultural Commodities (pp. 499-527). Elsevier. https://doi.org/10.1016/B978-0-12-813276-0.00015-8
Zhou, Y., Liu, L., & Deng, G. (2009). Comparisons of the generalized potential temperature in moist atmosphere with the equivalent potential temperature in saturated moist atmosphere. Advances in Meteorology, 2009, 1-9. https://doi.org/10.1155/2009/105265
Downloads
Published
How to Cite
License
Copyright (c) 2025 Ibero-American Journal of Bioeconomics and Climate Change

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright © 2025 Rev. iberoam. bioecon. climate change. National Autonomous University of Nicaragua León (UNAN-León), Knowledge Area of Agrarian and Veterinary Sciences / Specific Area of Agroecology and Agribusiness / Center for Research in Agrarian Sciencies. Academic Directorate. Research Department. Publication and scientific events Unit.


EDITORIAL


This work is licensed under a Licencia Internacional 







