Predictive power of the altman z-score model in companies declared in corporate reorganization
DOI:
https://doi.org/10.5377/aes.v4i1.16451Keywords:
accuracy, financial insolvency, business failure, measurementAbstract
The measurement of financial insolvency has evolved over the last 60 years from a subjective approach to the creation of sophisticated techniques (classical models and alternative models). Within this group of models, the Altman Z-score model stands out as a financial insolvency prediction tool that has been the subject of many investigations in different economic sectors. Although there are studies that validate the accuracy of the Z-score model, there is no theoretical consensus on the predictive capacity of the Altman Z-score model and the state of financial insolvency declared under Law 1116 of 2006. For this reason, the objective of this study is to measure the level of predictability of the Altman Z-score in Colombian companies declared in corporate reorganization. To achieve this objective, the study is developed under a descriptive quantitative methodological approach. The results of the model measurements show that, on average, the companies are in the safe zone, indicating a low probability of insolvency. Therefore, it is contradictory that these companies were under corporate reorganization in the year 2021. Based on the research results, it can be concluded that although the predictability level of the model is only 33%, this does not mean that the model is an ineffective financial tool for calculating the probability of bankruptcy for companies in Colombia.
Downloads
References
Alaka, H. A., Oyedele, L. M., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Application, 94, 164-184. https://doi.org/10.1016/j.eswa.2017.10.040
Alcalde, R., Alonso de Armiño, C., & García, S. (2022). Analysis of the economic sustainability of the supply chain sector by applying the Altman Z-score predictor. Sustainability, 14(2), 851. https://doi.org/10.3390/su14020851
Almamy, J., Aston, J., & Ngwa, L. N. (2016). An evaluation of Altman's Z-Score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK. Journal of Corporate Finance, 36, 278-285. https://doi.org/10.1016/j.jcorpfin.2015.12.009
Altman, E. I. (1968). Financial Ratios, Discriminant Analysis, and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
Altman E. I. (1970). Ratio analysis and the prediction of firm failure: A reply. The Journal of Finance, 25(25), 1169-1172. https://doi.org/10.2307/2325591
Altman E. I. (1983). Corporate financial distress. A Complete Guide to Predicting, Avoiding, and Dealing with Bankruptcy. Wiley Interscience. John Wiley and Sons.
Altman, E. I., Hartzell, J., & Peck, M. (1995). Emerging market corporate bonds: A scoring system. Salomons Brothers, Emerging Market Reviews.
Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress & bankruptcy. 3rd edition. J. Wiley & Sons.
Altman, E. I., Iwanicz‐Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z‐score model. Journal of International Financial Management & Accounting, 28(2), 131-171. https://doi.org/10.1111/jifm.12053
Apan, M., Öztel, A., & İslamoğlu, M. (2018). Comparative empirical analysis of financial failures of enterprises with Altman Z-Score and VIKOR methods: BIST food sector application. Australasian Accounting, Business and Finance Journal, 12(1), 77-101. http://dx.doi.org/10.14453/aabfj.v12i1.6
Balcaen, S., & Ooghe, H. (2006). 35 Years of Studies on Business Failure: An Overview of the Classic Statistical Methodologies and Their Related Problems. The British Accounting Review, 38(1), 63–93. https://doi.org/10.1016/j.bar.2005.09.001
Bharath, S. T., & Shumway, T. (2008). Forecasting default with the Merton distance to default model. The Review of Financial Studies, 21(3), 1339-1369.
Beaver, W. (1967). Financial ratios predictors of failure. Empirical research in accounting: selected studies 1966. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171
Black, F., & Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 8, 637-654.
http://dx.doi.org/10.1086/260062
Bonsón Ponte, E., Escobar Rodríguez, T., & Martín Zamora, M. (1997). Decision tree induction systems. Applications in Accounting and Finance. In Intelligent Technologies in Accounting and Business. Proceedings of the III International Meeting on Artificial Intelligence in Accounting, Finance and Tax. Huelva.
Boyacioglu, M., Kara, Y., & Baykan, Ö. (2009). Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey. Expert Systems with Applications, 36(2), 3355-3366. https://doi.org/10.1016/j.eswa.2008.01.003
Congreso de la República de Colombia. (2006). Ley por la cual se Establece el Régimen de Insolvencia Empresarial en la República de Colombia y se Dictan otras Disposiciones [Ley 1116]. http://www.secretariasenado.gov.co/senado/basedoc/ley_1116_2006.html
Cuberos Gómez, G. (2005). Insolvencia: evolución de un concepto. Revista de Derecho Privado, (34), 27-54. https://www.redalyc.org/articulo.oa?id=360033182002
Delapedra-Silva, V. A. (2021). The bankruptcy risk in infrastructure sectors: An analysis from 2006 to 2018. Revista de Administração Mackenzie, 22(4), 1-30. https://doi.org/10.1590/1678-6971/eRAMF210104
Divekar, V., & Sukhari, S. (2021). Assessing the financial soundness of Indian aviation sector companies by using Altman’s z-score model & Pilarski’s p-score model. Universal Journal of Accounting and Finance, 9(6), 1222-1234. https://doi.org/10.13189/ujaf.2021.090602
Frydman, H., Altman, E. I., & Kao, D. L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of Finance, 40(1), 269-291. https://doi.org/10.2307/2328060
Gavúrová, B., Packová, M., Mišanková, M. y Smrčka, Ľ. (2017). Predictive potential and risks of selected bankruptcy prediction models in the Slovak business environment. Journal of Business Economics and Management, 18(6), 1156-1173. https://doi.org/10.3846/16111699.2017.1400461
Gepp, A, Kumar, K., & Bhattacharya, S. (2010). Business failure prediction using decision trees. Journal of Forecasting, 29(6), 536–555. https://doi.org/10.1002/for.1153
Hernández Ramírez, M. (2014). Modelo financiero para la detección de quiebras con el uso de análisis discriminante múltiple. InterSedes, 15(32), 4-19. https://doi.org/10.15517/isucr.v15i32.17792
Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Application, 117, 287-299. https://doi.org/10.1016/j.eswa.2018.09.039
Ibáñez, D. (2020). Impacto de la coyuntura del coronavirus en la economía colombiana. Superintendencia de Sociedades de Colombia.
Isaac-Roque, D. y Caicedo-Carrero, A. (2023). Relación entre los indicadores financieros del modelo Altman Z y el puntaje Z. Retos Revista de Ciencias de la Administración y Economía, 13(25), 139-158. https://doi.org/10.17163/ret.n25.2023.09
Jánica, F., Hernández-Fernández, L., Escobar, A., y Velandia, G. (2023). Factores que explican, median y moderan el fracaso empresarial: Revisión de publicaciones indexadas en Scopus (2015-2022). Revista de Ciencias Sociales, XXIX (2), 73-95.
Karas, M., & Řežnáková, M. (2012). Financial ratios as bankruptcy predictors: The Czech Republic case. En D. Pavelková, J. Strouhal y M. Pasekova (eds.), Proceeding of the 1st WSEAS International Conference on Finance, Accounting and Auditing, 56-67. WSEAS
Keasey, K., & Watson, R. (1986). The prediction of small company failure: some behavioural evidence for the UK. Accounting and Business Research 17(65), 49–57. https://doi.org/10.1080/00014788.1986.9729781
Ko, Y.-C., Fujita, H., & Li, T. (2017). An evidential analysis of Altman Z -score for financial predictions: Case study on solar energy companies. Applied Soft Computing, 52, 748-759. https://doi.org/10.1016/j.asoc.2016.09.050
Laurens, S., & Mulyani, S. D. (2022). Financial distress and financial performance on stock return with firm size as moderating variable. Jurnal Manajemen dan Kewirausahaan, 10(1), 1-7. https://bit.ly/3KyvkE4
Lestari R.M.E., Situmorang M., Pratama M.I.P., & Bon A.T. (2021). Financial distress analysis using altman (Z-score), springate (S-Score), zmijewski (X-Score), and grover (G-Score) models in the tourism, hospitality and restaurant subsectors liste don the Indonesia stock exchange period 2015-2019. Proceedings of the International Conference on Industrial Engineering and Operations Management. http://www.ieomsociety.org/singapore2021/papers/755.pdf
Lizarzaburu, E. R. (2014). Análisis del Modelo Z de Altman en el mercado peruano. Universidad & Empresa, 16(26), 141-158. https://doi.org/10.12804/rev.univ.empresa.26.2014.05
López, J. E. (2015). Modelo de predictibilidad de quiebra en las pymes colombianas del sector comercio. [Tesis de maestría, Colegio de Estudios Superiores de Administración -CESA]. Colombia. Recuperado de http://hdl.handle.net/10726/1064
Martínez, R. M., Tuya, L. C., Martínez, M., Pérez, A. y Cánovas, A. M. (2009). El coeficiente de correlación de los rangos de Spearman caracterización. Revista Habanera de Ciencias Médicas, 8(2), 1-19.
Merlo, M., Scarfó, E., Vélez, I., Sandoval, J., Castilla, P., & Ortiz, D. (2022). Análisis Financiero Integral: Teoría y práctica. Alphaeditorial.
Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of finance, 29(2), 449-470. https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
Moses, D., & Liao, S.S. (1987). On developing models for failure prediction. The Journal of Commercial Bank Lending, 69, 27–38.
Odom, M., & Sharda, R. (1990) A Neural Network for Bankruptcy Prediction. International Joint Conference on Neural Networks, 2, 163-168. https://doi.org/10.1109/IJCNN.1990.137710
Ohlson, J. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18(1), 109–131. https://doi.org/10.2307/2490395
Ortiz, D. C. P., Villarreal, J. A. G., y Morales, A. (2018). Pronóstico de insolvencia financiera para empresas del sector construcción que cotizan en la bolsa caso: México y Colombia. En M. I. Redondo Ramírez et al. (Eds.), Internacionalización de la Investigación en las Ciencias Sociales, 301-321. Universidad Libre Seccional Pereira.
Parrado Salinas, J. S. (2020). Comprobación de la capacidad de predicción de quiebra del modelo Altman para las empresas del sector construcción en el periodo de 2015 a 2017 [Trabajo de grado, Universidad de La Salle]. Repositorio Universidad de La Salle. https://ciencia.lasalle.edu.co/finanzas_comercio/600/
Restrepo, L. Y., y Vergara, S. A. (2019). Modelos de estructuración de operaciones de crédito para pymes en Colombia utilizando fintech y fondos de inversión colectiva (FIC). [Tesis de maestría, Universidad EAFIT]. Repositorio Institucional Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/13854
Romero Espinosa, F. (2013). Alcances y limitaciones de los modelos de capacidad predictiva en el análisis del fracaso empresarial. AD-minister, (23), 45-70. https://publicaciones.eafit.edu.co/index.php/administer/article/view/2243
Romero Espinosa, F, Molina, Z. A. M., y Vera-Colina, M. A. (2015). Fracaso empresarial de las pequeñas y medianas empresas (pymes) en Colombia. Suma de negocios, 6(13), 29-41.
Romero, Y., Salazar, A. J., y Sánchez, I. J. (2020). Medición de la competitividad de los sectores económicos del departamento de sucre: propuesta desde la gestión financiera. Aglala, 11(1), 90-109.
Roque, D. I. y Caicedo Carrero, A. (2021). Relación entre la creación de valor económico y la insolvencia financiera en empresas no cotizantes en el mercado de valores de Colombia (2016-2019). Semestre Económico, 24(57), 76-97. https://doi.org/10.22395/seec.v24n57a4
Roque, D. I. y Caicedo Carrero, A. (2022). Detección de insolvencia financiera mediante el modelo Z-Altman en empresas colombianas no cotizantes durante el periodo 2016-2019. Contabilidad y Negocios, 17(33), 167-192. https://doi.org/10.18800/contabilidad.202201.007
Ross, S. A., Westerfield, R. W., & Jordan, B. D. (2018). Fundamentos de finanzas corporativas. México: McGraw Hill Interamericana Editores.
Sareen, A., & Sharma, S. (2022). Assessing financial distress and predicting stock prices of automotive sector: robustness of Altman Z-score. Vision, 26(1), 11-24. https://doi.org/10.1177/0972262921990923
Shahrier, N. A., Ho, J. S. Y., & Gaur, S. S. (2020). Ownership concentration, board characteristics and firm performance among Shariah-compliant companies. Journal of Management and Governance, 24, 365-388. https://doi.org/10.1007/s10997-018-9436-6
Tamari, M. (1966). Financial ratios as a means of forecasting bankruptcy. Management International Review 6(4), 15–21. https://www.jstor.org/stable/40226072
Ucbasaran, D., Shepherd, D. A., Lockett, A., & Lyon, S. J. (2013). Life after business failure: The process and consequences of business failure for entrepreneurs. Journal of management, 39(1), 163-202. https://doi.org/10.1177/0149206312457823
Yuliastary, E. C., & Wirakusuma, M. G. (2014). Analisis financial distress dengan Metode Z-Score Altman, Springate, Zmijewski. E-Jurnal Akuntansi, 6(3), 379-389. https://ojs.unud.ac.id/index.php/akuntansi/article/view/8336
Zambrano, F. J. (2018). Determinantes de la supervivencia empresarial de las MIPYME en Ecuador. [Tesis de maestría, Universidad de Almería].
Zambrano Farías, F. J., Sánchez Pacheco, M. E., & Valls Martínez, M. del C. (2021). Factors Explaining the Business Survival of MSMEs in Ecuador Factores Explicativos de la Supervivencia Empresarial de la Mipyme en Ecuador. Studies of Applied Economics, 39(8), 1–18. https://doi.org/10.25115/eea.v39i8.4061
Zmijewski, M.E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59–86. https://doi.org/10.2307/2490859
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Universidad Nacional Autónoma de Nicaragua, León
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.