Methodology to implement adaptive Monte Carlo method in the evaluation of measurement uncertainty, using the Maple symbolic computation. Application to a simple experiment

Authors

DOI:

https://doi.org/10.5377/universitas.v3i2.1662

Keywords:

Measurement uncertainty using the adaptive Monte Carlo method, Propagation of distributions

Abstract

The objective of this study is to apply a rigorous methodology to estimate measurement uncertainty using the adaptive Monte Carlo simulation method (MCM). As an example, the uncertainty in the measurement of the area of a triangle was estimated. The value of the area (y) and its associated uncertainty (uy) were calculated based on an algorithm programmed in Maple 12, generating a total of 10,000 values of the measurand. To calculate the confidence interval (or coverage interval), these values were exported to an MS Excel spreadsheet, where the cumulative percentages of the cumulative probability distribution function (CPDF) were obtained, and the lower and upper limits of the coverage interval (yinf, ysup) at a 95% probability level were evaluated. Based on the results, a histogram was plotted, showing a normal distribution. To verify statistical stability, the adaptive procedure from Supplement 1 of the GUM ISO 2008 guide was applied. The calculations were repeated three times until the desired precision was achieved. The final parameter values of the measurand in cm² were: y = 50.72, uy = 0.13, yinf = 50.48, ysup = 50.96. The classical GUM 1995 method or law of propagation of uncertainty was also applied, yielding the following values: y = 50.72, uy = 0.25, yinf = 50.21, ysup = 51.22. When comparing the two methods, the simulation technique was found to offer greater precision.

Downloads

Download data is not yet available.

Author Biography

G. Delgado-Alvarado, National Autonomous University of Nicaragua, León. Nicaragua

Researcher at the Faculty of Sciences and Technology, Department of Chemistry, Laboratory of Trace Analysis of Heavy Metals (LATMP), Basic Sciences Building, León, Nicaragua.

References

DELGADO M., VANEGAS M. Y DELGADO G., (2008) "Metrología Química II: Estimación de la incertidumbre en la medición de pH en aguas", Universitas UNAN-León, Vol 1, 2, 7-17 https://doi.org/10.5377/universitas.v2i1.1638

DELGADO G y NAGEL B. (2008) "Un experimento sencillo para evaluar la incertidumbre siguiendo la guía GUM ISO 1995 y utilizando el cálculo simbólico MAPLE 11.0", Universitas UNAN-León, Vol 1, 2, 19- 26. https://doi.org/10.5377/universitas.v2i1.1639

DELGADO G. y HERNÁNDEZ N., (2009), "Estimación de la incertidumbre en la determinación de afl atoxina B1 en maní de exportación por HPLC- FD", Universitas UNAN-León, Vol. 3, 1, 5-15.https://doi.org/10.5377/universitas.v3i1.1655

DELGADO G. y HERNÁNDEZ N., (2009), "Cálculo de la incertidumbre por simulación de Montecarlo en la determinación de afl atoxina B1 en maní de exportación por HPLC-FD. Aplicación a la evaluación de la conformidad", Universitas UNAN- León, Vol. 3, 1, 16-26.https://doi.org/10.5377/universitas.v3i1.1656

HERRADOR, M.A., GONZÁLEZ G.A., (2004), "Evaluation of Measurement uncertainty in Analytical Assayes by means of Monte Carlo Simulation", Talanta, Vol. 64, 6, 415-422. https://doi.org/10.1016/j.talanta.2004.03.011

COWELL D.A., HOLKOMKE J.A., (1990), "Analytical applications of Monte Carlo", Anal. Chem., 62, 529A-542A.https://doi.org/10.1021/ac00208a001

BIPM, IEC, IFCC, IUPAC, OIML (1995:2008). Guide for to the Expression of Uncertainty in Measurement (GUM), ISO, Ginebra.

a) BIPM, IEC, IFCC, IUPAC, ILAC, ISO, IUPAP y OIML, (2006). "Suplement 1 to the Guide for to the Expression of Uncertainty in Measurement (GUM). Propagation of the distributions using a Monte Carlo Method" (Draft), Paris. b) BIPM, IEC, IFCC, IUPAC, ILAC, ISO, IUPAP y OIML, (2008). "Evaluation of measurements data. Supplement 1 to the Guide for to the Expression of Uncertainty in Measurement (GUM). Propagation of the distributions using a Monte Carlo Method", Paris.

ISO/IEC 17025(ES) (2005). "Requisitos Generales para la Competencia de los Laboratorios de Ensayo y de Calibración", Norma Internacional, Ginebra, Segunda Edición.

KIMOTHI, S.K., (2002), The Uncertainty of Measurements, ASQ Quality Press, Wisconsin , pag. 205.

Published

2009-11-04

How to Cite

Delgado Alvarado, G. (2009). Methodology to implement adaptive Monte Carlo method in the evaluation of measurement uncertainty, using the Maple symbolic computation. Application to a simple experiment. Universitas (León), 3(2), 22–32. https://doi.org/10.5377/universitas.v3i2.1662

Issue

Section

Original Scinetific Articles

Most read articles by the same author(s)