Evaluation of Uncertainty in the Determination of Lead in Blood by Anodic Stripping Voltammetry, Applying the Weighted Calibration Model of Standard Addition Generated by Monte Carlo Simulation

Authors

  • Gustavo Delgado National Autonomous University of Nicaragua, Leòn
  • Manuel Vanegas National Autonomous University of Nicaragua, Leòn
  • Jairo Salazar National Autonomous University of Nicaragua, Leòn

DOI:

https://doi.org/10.5377/universitas.v4i1.1675

Keywords:

Evaluation of uncertainty in the determination of lead in blood by Monte Carlo simulation, Determinatiòn of lead in blood by anodic stripping voltammetry.

Abstract

The present work aims to demonstrate that the evaluation of the uncertainty in the determination of lead in blood by anodic stripping voltammetry, applying the weighted linear regression analysis by standard addition and generated by Monte Carlo simulation, is more consistent with the experimental results obtained. with those obtained by applying the classical approach based on the law of propagation of uncertainty. For the first case, the program was developed in Maple 13, based on the algorithm obtained from Supplement 1 of the GUM 2008 guide, taking into account both the uncertainties in the readings of the instrumental signal and those involved in the preparation of the concentrations of the calipers. The characteristic values ​​of lead for a blood sample were: 3.02 μg/dL, with an uncertainty of 0.15 μg/dL, with a coverage interval of 2.74 μg/dL to 3.29 μg/dL. The results obtained by applying the uncertainty propagation law from the classical weighted calibration model were the following: 3.08 μg/dL, uncertainty 0.042, coverage interval from 3.00 to 3.16 μg/dL. It was observed that there is greater uncertainty in the numerical method. However, they are consistent with experimental results from a blood sample

 

Downloads

Download data is not yet available.

Author Biographies

Gustavo Delgado, National Autonomous University of Nicaragua, Leòn

Faculty of science and technology, Chemistry Department, Heavy Metal Trace Analysis Laboratory (LATMP), Basic Sciences Building, León, Nicaragua. Phone: 505 2311 5013, ext: 1132. Fax: (505) 2311 4012

Manuel Vanegas, National Autonomous University of Nicaragua, Leòn

Faculty of science and technology, Chemistry Department, Heavy Metal Trace Analysis Laboratory (LATMP), Basic Sciences Building, León, Nicaragua. Phone: 505 2311 5013, ext: 1132. Fax: (505) 2311 4012

Jairo Salazar, National Autonomous University of Nicaragua, Leòn

Faculty of science and technology, Chemistry Department, Heavy Metal Trace Analysis Laboratory (LATMP), Basic Sciences Building, León, Nicaragua. Phone: 505 2311 5013, ext: 1132. Fax: (505) 2311

References

BARD A. y FULKNER L., (2000), "Electrochemical Methods", 2a edición, John Wiley, NY. Pag. 458.

HENZE G., (2003), "Introduction to Polarography and Voltammetry", Metrohm, Suiza, pag. 23.

BESSIER P.M., (1994), Analyst, 119, 219.

ARROYO L., ALVARADO L y BRAVO S., (1996), Ing. Cienc. Quím., 16, 2, 80-82.

CLESCERL L, GREENVERG A, EATON A, (1999), "Standards Methods", American Public Health Association, 20 Edición, NY, pag. 3-52.

W, Wasiak, W. Ciszewska, A, Ciszewski, (1996), Analytica Chimica Acta, 335, 201-207.

https://doi.org/10.1016/S0003-2670(96)00323-6

Center for Deasease Control and Prevention, www.cdc.gov/niosh/npg/npgd0368.html. Acceso el 26 de Mayo 2011.

Kowalski W, (1998), "Chemometrics" John Wiley, N.Y. pag 132.

BIPM, IEC, IFCC, IUPAC, OIML (1995:2008). Guide for to the Expression of Uncertainty in Measurement (GUM), ISO, Ginebra.

EURACHEM/CITAC GUIDE, (2000), Quantifying Uncertainty in Analytical Chemistry, 2da edición, UK.

OGREN P, DAVIS B y NICK G, (2001), J. Chem. Edu. 78, 6, 827-836.

https://doi.org/10.1021/ed078p827

MEIER P y ZUND R, 2000, "Statistical Methods in Analytical Chemistry", John Wiley, N.Y. pag. 166.

https://doi.org/10.1002/0471728411

BIPM, IEC, IFCC, IUPAC, ILAC, ISO, IUPAP y OIML, (2008). "Evaluation of measurements data. Supplement 1 to the Guide for to the Expression of Uncertainty in Measurement (GUM). Propagation of the distributions using a Monte Carlo Method", Paris.

DELGADO G. y HERNÁNDEZ N., (2009), "Estimación de la incertidumbre en la determinación de aflatoxina B1 en maní de exportación por HPLC-FD", Universitas UNAN-León, Vol. 3, 1, 5-15.

https://doi.org/10.5377/universitas.v3i1.1655

DELGADO G. y HERNÁNDEZ N., (2009), "Cálculo de la incertidumbre por simulación de Montecarlo en la determinación de aflatoxina B1 en maní de exportación por HPLC-FD. Aplicación a la evaluación de la conformidad", Universitas UNAN-León, Vol. 3, 1, 16-26.

https://doi.org/10.5377/universitas.v3i1.1656

NEULLY. M. (1998), "Modélisation et estimation des erreurs des mesures", Technique & Documentation, 2a edición, París, pag. 53.

LATMP-PT-01, 2010, "Procedimiento para la determinación de plomo en sangre por Voltamperometría de redisolución anódica por diferencial de impulso (ASV-DP)". Laboratorio de Análisis de Trazas de Metales Pesados (LATMP), UNAN-León.

Published

2013-07-04

How to Cite

Delgado, G. ., Vanegas, M. ., & Salazar, J. . (2013). Evaluation of Uncertainty in the Determination of Lead in Blood by Anodic Stripping Voltammetry, Applying the Weighted Calibration Model of Standard Addition Generated by Monte Carlo Simulation. UNIVERSITAS (LEÓN): SCIENTIFIC JOURNAL OF THE UNAN-LEÓN, 4(1), 58–70. https://doi.org/10.5377/universitas.v4i1.1675

Issue

Section

Articles

Most read articles by the same author(s)